Science

Absolute stability of nonlinear dynamic systems

with parameter uncertainty of interval type

(part I)

R.S.Ivlev

Institute of Informatics and Control Problems,

125 Pushkin Str., Almaty, Republic of Kazakhstan, 480100

ivlevruslan@newmail.ru

1. Introduction

In the paper on the base of direct method of Lyapunov the absolute stability property of the nonlinear dynamic parametric uncertain system is investigated. A mathematical model of the system under investigation is given in the states space as the nonlinear differential inclusions of the interval type:

ššššššššššš ,šššššššššššššššššššššššššš ,ššššš ,ššššššššššššššššššššššššššššš (1)

where š- states vector,š šare continuous functions at , i.e. , , š- a constant interval matrix of dimension , , š- the set of all real intervals, , š- an interval vector of dimension , , , , š- control action that satisfies the relation

ššššššššššš ,ššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššš (2)

whereš š- a continuous differentiable function, , such, that true the following inequality is

ššššššššššš ,ššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššš (3)

where š- a real quadratic form of the variables šand ; the value šis determined according to the expression

ššššššššššš ,ššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššš (4)

where š- a vector of dimension .

Definition 1. Any absolute continuous function šis said to be a solution ofš (1) - (4), if for some šand šit satisfies the following nonlinear system of differential equations

ššššššššššš ,šššššššššššššššššš ,ššššššššššššššššš .ššššššššššššššššš (5)

Definition 2. The system of the nonlinear differential inclusions (1) - (4) is said to possess some property , if any systemš (5) for šand špossesses this property.

After choosing Lyapunov function in the form of Lurye-Postnikov

ššššššššššš ,šššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššš (6)

where , - a symmetric positive definite matrix, š- a nonnegative number, and applying S-procedure the S-form has the view:

,šššššššššššššššššššššššššššššššššššššššš (7)

where š- a nonnegative number, the vector šand the matrix šis defined as

.

 

Definition 3. An interval square matrix , , , šis said to be positive definite and to write down , if any matrix šis positive definite, i.e. šthe quadratic form š, .

Definition 4.š The set of thin matrices

ššššššššššš ,

where the inequality sign is understood componentwise, is said to be a symmetric interval matrix and write down .

Definition 5. The set of square thin matrices

ššššššššššššššššššššššš (16)

is called the tolerable solution set of the interval matrix equation of Lyapunov

ššššššššššš .ššššššššššššššššššššššššššššššššššš šššššššššššššššššššššššššššššššššššššššššššššššššššššššššš (17)

Definition 6. The interval

ššššššššššš

is called a determinant of an interval square matrix .

Theorem. Let for the given interval matrix šand some interval symmetric positive definite matrix šthe tolerable solution set (16) of the interval matrix equation of Lyapunov (17) be not empty, i.e. , some symmetric matrix belong to this set , and there exist such nonnegative numbers šand , that for the given interval vector šthe determinant of the following interval matrix

ššššššššššš šššššššššššššššššššššššššššššššššššššššš (18)

satisfies the condition

ššššššššššš ,šššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššš (19)

then the equilibrium position šof the interval specified system (1) - (4) is absolute stable in the chosen class of nonlinearties.

In the paper an algorithm for investigating the absolute stability of the system under consideration in the chosen class of nonlinearities is shown.




[Contents]

homeKazanUniversitywhat's newsearchlevel upfeedback

© 1995-2008 Kazan State University