Absolute stability of nonlinear dynamic systems with
parameter uncertainty of interval type
(part II)
R.S.Ivlev
Institute
of Informatics and Control Problems,
125
Pushkin Str., Almaty, Republic of Kazakhstan, 480100
In the second part of the paper the
further investigation of the absolute stability of the nonlinear dynamic
interval specified system of Lurye is fulfilled from the point of view of
searching for new conditions of existing Lyapunov function enabling to obtain
simple in calculation aspect algebraic criterion of the absolute stability.
The perturbed motion of the
nonlinear dynamic system under investigation is described with the mathematical
model having the following view in the states space:
ššššššššššš
,šššššššššššššššššššššššššš
,ššššš
,ššššššššššššššššššššššššššššš (1)
where
š- states
vector,
š- control action defined according to the relation
ššššššššššš
,ššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššš (2)
where
š- a continuous differentiable function,
, satisfying the
sector type restriction
,ššššššššš ššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššš (3)
or
ššššššššššš
,
where
,
, and at
šnecessarily
; the
value
šis determined according to the expression
ššššššššššš
,ššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššš (4)
where
š- a vector of dimension
.
Definition
1. Any absolute continuous function
šis said to be a solution ofš
(1) - (4), if for some
šand
šit satisfies the following nonlinear system of differential
equations
ššššššššššš
,šššššššššššššššššš
,ššššššššššššššššš
.ššššššššššššššššš (5)
Definition
2. The system of the nonlinear differential
inclusions (1) - (4) is said to possess some property
, if any systemš (5) for
šand
špossesses this property.
In the second part of the paper on the base of entered
concepts of Lurye interval resolving system

where
- an interval
symmetric positive definite matrix,
š- a
nonnegative number, and the generalized solution set of Lurye interval resolving system
![]()

the following theorem is proved.
Theorem 1. Let for the given interval matrix
,
interval vector
,
vector
šand some interval symmetric positive definite
matrix
šthe following conditions be true:
1)
the
generalized solution set (12) of Lurye interval resolving system (13) is not
empty, i.e.
;
2)
the
matrix
is
symmetric positive definite;
3)
the
nonlinear algebraic equation:
šrelative to
šdoes not have real nonzero solutions;
4)
the
scalar
is
nonnegative,
then the equilibrium position
šof the system (1) - (4) under investigation is absolute
stable in the chosen class of nonlinearities.
Some questions concerning the investigation of
the nonemptiness of the generalized solution set of Lurye interval resolving
system are considered in this part of the paper.
© 1995-2008 Kazan State University