Nonlinear modelling for elasto/visco-plastic contact problem
in
technological processes
The
Technical University of Koszalin
ul.
Racławicka 15-17, 75-620 Koszalin, Poland
e-mail: leon@tu.koszalin.pl
This paper presents the
modelling of a contact problem in the operation of technological production of
objects. An incremental model of the contact problem for movable
elasto/visco-plastic body for spatial states (3D) is being considered. Geometrical contact conditions (GCC) for the
case of a deformed object and a rigid or elastic tool, with a rotation and
translation of the bodies are introduced. A GCC form used in numeric
calculations is determined. Dependences between increments of unit forces in the
contact area of bodies is introduced. Basic incremental equations of the edge
displacement in the reversible and nonreversible zone are defined. The
description of a geometrical contact conditions and friction conditions in the
ranges of stick-slip are considered. The
models obtained are used to a variational formulation of a contact problem with
the application of a method of finite elements and to a numerical analysis of
the contact problem.
Introduction
One of
the most important problems of the present production technologies is to form
the quality of an object with proprieties set in advance. The finishing operation
constitutes the most important operation of the object's technological
production, during which the basic exploitation properties of the surface layer
are established [1, 2÷6, 7÷9]. These properties, in definite
conditions of exploitation, are decisive as regards the reliability of
machines. Examples of occurrence of contact bodies (tool-object) in different
technological operations are shown in Figure 1.
The
contact of those bodies which either one of them or both are deformable
testifies to the occurrence of the process of many mechanical phenomena. Their
variety causes that contact problems occupy a special position in the mechanics
of the solid body. It results from a fold character of the phenomena setting at
the contact and from the difficulties of their investigation and description.
The contact problem occurs in the two non-linearities: geometrical (a change of
the initial geometry of the body providing a non-linear dependence
strain-displacement
) and physical (a non-linear dependence stress-strain
). Moreover, boundary conditions are often changeable and
definite in part only. In such cases, it is necessary to make use of an
incremental description.
|
|
|
|
Figure 1. Contact problem in process of milling
(a), burnishing (b) and thread rolling (c).
The
analysis of the state of displacements, deformations and stress constitutes the
basic problem, and the knowledge of these (both of flat and spatial problems)
creates wide possibilities of the description of physical phenomena set during
the mutual influence of bodies [10, 11, 12]. A particularly essential and
practical group of problems is the contact between a deformable visco-plastic
body (object) and a rigid body (tool). In the process of the tool's contact
with the object it can step out a different degree of deformation. A different
stiffness of the elastic body (the tool) corresponds to a different deformation
of the object and a different resistance of the local non-reversible deformation,
put mainly in the contact area. The states of small elastic deformations of the
tool accompany the elastic and visco-plastic deformation of the object.
The
phenomena described accompany the burnishing rolling operation. In literature,
various problems are connected with burnishing rolling. Particular attention
should be paid to the following issues: the geometrical structure of an object's
surface after its previous processing [13], the deformation mechanism of an
inequality in the burnishing process [13, 14], the durability of a burnishing
element (tool) in the time of the process [1, 13, 15], the state of the displacement
rate and the deformation rate of the surface layer material during the
burnishing process [13] and the size of the areas of contact zones [3, 13, 16 -
20]. The publications [4, 5, 6, 21, 22] contain a modern method of burnishing
rolling modelling with the use of the mechanic contact. These concern the
contact problem of an ideally rigid body with a deformable body (elasto-plastic
or rigid-plastic), for the cases of the occurrence of very small plastic
deformations - comparable to an elastic deformation.
In the present
paper, the incremental model of movable elasto/visco-plastic body contact, with
mixed hardening, for spatial states (3D) is being considered. This model is
used to a variational formulation of the contact problem with application of
the finite element method (FEM) [23]. This then permits a numerical analysis
and a simulation of contact problems [8, 9, 24, 25, 26].
Conclusions
A greater
accuracy to achieve quality of objects in the technological process calls for a
greater accuracy of modelling and analyses of physical concurrent phenomena
process of processing. This contact constitutes the basic problem. A fold
character of setting phenomena during the contact and difficulties of their
examination to search solutions is on a theoretical way. Geometrical and
physical nonlinearity, and only partial knowledge of boundary conditions, which
move in track of the process cause the necessity to apply an incremental description.
In this
work the incremental model of contact problem, for movable elasto/visco-plastic
bodies and for spatial states (3D) is elaborated. The geometrical condition of
contact (GCC) has been laid out for the case of a deformable object and a rigid
or elastic tool, serf rotation and translation. The GCC condition applied was
passed in numerical calculations. Dependences between increments of unit forces
in the area of contact of bodies were introduced. Basic equations were defined
onto the increment of the edge displacement in range of reversible and nonreversible
displacements for an elasto/visco-plastic body. A differential form of the
friction function was laid out and the conditions of slip and stick of material
in area of contact were qualified. The
models obtained are used in a variational formulation of the contact problem
with application of the finite element method and to a numeric analysis of
fabrication processes e.g. processes of burnishing rolling and grinding processes.
References
1.
R.Kolman. Mechaniczne wzmacnianie powierzchni
części maszyn. WNT, Warszawa, 1965.
2.
D.D.Papszew. Uprocznienije detalej obkatkoj szarikami.
Maszinostrojenije, Moskwa, 1968.
3.
W.Przybylski. Obróbka nagniataniem. Technologia
i oprzyrządowanie. WNT, Warszawa, 1979.
4.
W.Przybylski. Technologia obróbki nagniataniem.
WNT, Warszawa, 1987.
5.
K.Skalski. Analiza zagadnienia kontaktowego ciała
sprężysto-plastycznego (na podstawie zasad wariacyjnych i metod
elementów skończonych). Prace Naukowe Mechanika, z. 67,
Politechnika Warszawska, 1979.
6.
K.Skalski. Zagadnienia kontaktowe dla ciała sprężysto-plastycznego.
Mechanika z. 94. Politechnika Warszawska, Warszawa 1986.
7.
L.Kukiełka, T.Karpiński, K.Wieczorowski.
Elaborate of modern method to modelling and analysis of burnishing cold rolling
operation, Report of the project No 7T07D01912, Koszalin, 1999, in Polish.
8.
W.Cienkowski. The analysis of states of displacement
and deformation of material of object with determined, periodical roughness of
surface in burnishing rolling process. Doctorat thesis. Technichnical
University of Koszalin. (promotor Prof. L. Kukiełka). Koszalin 2000, p.
174, in Polish.
9.
J.Kustra. Analysis of thermal phenomena and
deformations in processing zone in the centerless continuous grinding
processes. Doctoral thesis. Technical University of Koszalin. (promoter Prof.
L.Kukiełka). Koszalin, 2002, p. 193, in Polish.
10. I.V.Boussinesq.
Application des potentiels à l'étude de l'équilibre et du
mouvement des solides élastiques. Gauthier - Villars, Paris 1885.
11. K.L.Johnson.
Contact mechanics. Cambridge University Press, 1985.
12. H.Hertz.
Über die Berührung fester elastischer Körper. Journ. für
die reine angew. Mathem. Bd. 92, pp. 156-171, 1881.
13. L.Kukiełka.
Theoretical and experimental foundations of surface roller burnishing with the
electrocontact heating. Book of Mechanical Engineering. Technical University of
Koszalin, No 47, Koszalin 1994, p. 348 (in polish).
14. L.Kukiełka.
Modelowanie przyrostu odkształceń i przyrostu naprężeń
w warunkach nagniatania tocznego na zimno i półgorąco. ZN WM
Nr 25, 30 lat Politechniki Koszalińskiej-Posiedzenie Komitetu Budowy Maszyn,
s. 63-76, 1998.
15. Z.Mróz,
H.P.Shrivastova, R.N.Dubey. A non-linear hardening model and its application to
cyclic loading. Acta Mech., Vol. 25, pp. 51¸61, 1976.
16. I.F.Collins.
On the rolling of a rigid cylinder on a rigid perfectly plastic half-space.
Trans. of the ASME. Journal of Applied Mechanics, vol. 2, pp. 431-488, 1978.
17. J.Jezierski.
Analiza powierzchni kontaktu i sił zgniatania w procesie
wzdłużnego nagniatania na zimno wałków stopniowanych.
Postępy technologii Maszyn i urządzeń, z. 1-4, pp. 63-76, 1989.
18. J.Jezierski. Calculation of the area of contact surface and its
projection during shaft forming by longitudinal rolling. Archiwum Budowy
Maszyn, Vol. 38, z. 2, pp. 137-149, 1991.
19. L.Kukiełka.
Designating the field areas for the contact of a rotary burnishing element with
the rough surface of a part, providing a high-quality product. Journal of
Mechanical Working Technology, no 19, pp. 319-356, 1989.
20. L.Prandtl.
Anwendungsbeispiele zu einem Hencky'schen Satz über das plastische Gleichgewicht.
Zeitschrift angew. Math. Mechanik, Bd. 3, Nr 6, 1923, pp. 401¸406.
21. K.Skalski.
Współczesne metody analitycznego określania
głębokości odkształceń plastycznych w obróbce
nagniataniem. Postępy Technologii Maszyn i Urządzeń PAN, Zeszyt
nr 1-2, Warszawa-Kraków, pp. 47¸63, 1985.
22. K.Skalski,
J.Jezierski. Analiza głębokości zalegania odkształceń
plastycznych w obróbce powierzchniowej nagniataniem. III Konferencja
Naukowo-Techniczna nt. Technologia obróbki przez nagniatanie, ATR Bydgoszcz,
pp. 164÷184, 1984.
23. L.Kukiełka,
R.Błaszków. Variational formulation of contact problem of movable
elasto/visco-plastic body using the finite elements method. ZN WM nr 30,
Technical University of Koszalin, pp. 225-238, 2002, in Polish.
24. L.Kukiełka, R.Patyk, M.Wojtalik. Numerical analysis of contact
problem for elastic/visco-plastic body. Technical University of Koszalin, pp.
225-238, 2002, in Polish.
25. L.Kukiełka,
J.Kustra. Modelling of the process of cylindrical continuous centerless
grinding. Technical University of Koszalin, pp. 265-280, 2002, in Polish.
26. R.Błaszków,
L.Kukiełka, R.Patyk, M.Wojtalik. Numerical analysis of non - linear contact
problem in processes of burnishing rolling and centerless grinding. Int.
Journal "Problems of nonlinear analysis in engineering systems", No.2(21),
v.10, 2004.
27. L.Kukiełka.
Numerical modelling: the contact problem of movable elasto/visco-plastic body.
Computational Methods in Contact Mechanics VI, Ed. C.A. Brebbia, WIT Press,
Southampton, Boston 2003, pp. 93¸104.
28. L.Kukiełka.
Dynamic incremental nonlinear analysis of the burnishing rolling operation with
electric current, University Eds., WM nr 22, Technical University of Koszalin,
Poland, 1998, pp. 127142.
29. L.Kukiełka.
Nonlinear Modelling and Simulation of the Burnishing Rolling Operation with Electrical
Current, 7th International Conference of Steel Rolling, Steel
Rolling'98, Tokyo, 1998, pp. 200-205.
30. Z.Mróz.
On Forms of Constitutive Laws for Elastic-Plastic Solids. Archiwum Mechaniki
Stosowanej, v. XVIII, nr 1, pp. 3÷36, 1966.
31. K.Skalski,
J.Rońda. Zastosowanie mechaniki kontaktu do opisu modeli procesu
obróbki nagniataniem. IV Konferencja Naukowo-Techniczna nt. Technologia
obróbki przez nagniatanie. PAN-SIMP-ATR Bydgoszcz, pp. 112¸121, 1988.
32. J.J.Kalker.
On the rolling contact of two elastic bodies in the presence of dry friction.
Doctoral Dissertation, TUD, 1967.
33. J.J.Kalker.
The computation of 3-D rolling contact with dry friction. International Journal
of numerical methods in engineering, no 14, p. 1293, 1979.
34. K.J.Bathe.
Finite element procedures in engineering analysis, Prentice-Hall, Englewood
Cliffs, N.J., 1982.
35. M.Kleiber.
Finite element method in non-linear mechanics of continuum. PWN, Warszawa-Poznań,
1985, in Polish.
© 1995-2008 Kazan State University