Science

Finsler geometry and quantum field theory

Howard E.Brandt

U.S. Army Research Laboratory, Adelphi, Maryland, U.S.

hbrandt@arl.army.mil

Abstract. Finsler geometry motivates a generalization of the Riemannian structure of space-time to include dependence of the space-time metric and associated invariant tensor fields on the four-velocity coordinates as well as the space-time coordinates of the observer. It is then useful to consider the tangent bundle of space-time with space-time in the base manifold and four-velocity space in the fiber. A physical basis for the differential geometric structure of the space-time tangent bundle is provided by the universal upper limit on proper acceleration relative to the vacuum. It is then natural to consider a quantum field having a vanishing eigenvalue when acted on by the Laplace-Beltrami operator of the space-time tangent bundle. On this basis a quantum field theory can be constructed having a built-in intrinsic regularization at the Planck scale, and finite vacuum energy density.

Finslerian fields

A physical Finslerian field F(x.v) is one that depends not only on the observer's space-time coordinates,

šššššššššššššššššššššššššššššššššššššššššššššššššššššš x ≡ {xm}= {x0, x1, x2, x3},ššššššššššššššššššššššššššššššššššššššššššššššššššš (1)

but also on the observer's four-velocity coordinates,

ššššššššššššššššššššššššššššššššššššššššššššš v ≡ {vm}= {dxm/ds} = {v0, v1, v2, v3},šššššššššššššššššššššššššššššššššššššššššš (2)

where ds is the infinitesimal interval along the world line of the observer [1]-[3]. The four-velocity coordinates play here the role of the tangent space coordinates of Finsler geometry. It can be argued that the space-time-metric field gmn itself must in general depend not only on where it is observed in space-time, but also on the four-velocity of the 'observer', namely it is a Finslerian field [1]-[3]:

ššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššš gmn = gmn (x,v).ššššššššššššššššššššššššššššššššššššššššššššššššššššššššššš (3)

(The reader may prefer to replace the word 'observer' by 'measuring device', 'object acted upon by the field', or 'some other field interacting locally with the field'.) The space-time metric in a canonical Finsler space-time is not only Finslerian, but also satisfies special homogeneity conditions involving the dependence of the metric on the tangent space coordinates, v. In particular, one has [4], [5]

ššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššš ds = L(x, dx),šššššššššššššššššššššššššššššššššššššššššššššššššššššššššššš (4)

where L is the fundamental Finsler function, and

ššššššššššššššššššššššššššššššššššššššššššššššššššššššššš L(x, adx) = aL(x, dx),ššššššššššššššššššššššššššššššššššššššššššššššššššššš (5)

from which it follows that

šššššššššššššššššššššššššššššššššššššššššššššššššššššš šššššššššššššššššššššššššššššššššššššššššššššššššš (6)

šššššššššššššššššššššššššššššššššššššššššššššššššššššššššššš L2(x,v) = gmnvmvn,ššššššššššššššššššššššššššššššššššššššššššššššššššššššššš (7)

šššššššššššššššššššššššššššššššššššššššššššššššššš šššššššššššššššššššššššššššššššššššššššššššššš (8)

and

ššššššššššššššššššššššššššššššššššššššššššššššššššššššššš šššššššššššššššššššššššššššššššššššššššššššššššššššššš (9)

In considering Finslerian space-time and associated embedded Finslerian fields, it is useful to consider the tangent bundle of space-time with space-time in the base manifold and four-velocity space in the fiber. Using the homogeneity relations, Eqs. (4)-(9), then the connection and Riemann curvature scalar of the space-time tangent bundle [6] can be significantly reduced for the case of a Finsler-space-time base manifold [4], [7]. However, the special homogeneity requirements may not hold physically in general, but may only hold in certain special space-time models.

A physical basis for the differential geometric structure of the space-time tangent bundle is provided by the universal upper limit a0 on proper acceleration a relative to the vacuum [8]-[11]. If the proper acceleration were sufficiently large, then, because of vacuum radiation in an accelerated frame (in which particles are produced with average energy proportional to the proper acceleration), particles would be produced with mass such that their Schwarzschild radius exceeds their extent (Compton wave-length). Copious production of black-hole anti-black-hole pairs would ensue, accompanied by breakdown of the classical space-time structure, and the very concept of acceleration would loose any meaning because of the resulting complex topology. Explicitly, the maximal proper acceleration, a0, is given by [8]

šššššššššššššššššššššššššššššššššššššššššššššššššššššššššš ššššššššššššššššššššššššššššššššššššššššššššššššššššš (10)

where a is a number of order unity, c is the speed of light, šis Planck's constant divided by 2p, and G is the universal gravitational constant. This is the maximum possible proper acceleration relative to the vacuum and is taken to be universal. Hence for any proper acceleration a, one requires

ššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššš šššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššš (11)

But, according to the differential geometry of space-time, the proper acceleration, a, along a world line in curved space-time is given by

šššššššššššššššššššššššššššššššššššššššššššššššššššššš ššššššššššššššššššššššššššššššššššššššššššššššššš (12)

where the four-velocity vm is given by

ššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššš šššššššššššššššššššššššššššššššššššššššššššššššššššššššššššš (13)

and šdenotes the covariant derivative of the four-velocity with respect to the interval along the world line, namely,

ššššššššššššššššššššššššššššššššššššššššššššššššššššš šššššššššššššššššššššššššššššššššššššššššššššššš (14)

in which šis the space-time affine connection, and

ššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššš ds2š gmn dxm dxnššššššššššššššššššššššššššššššššššššššššššššššššššššššš (15)

is the line element of space-time. Then substituting Eqs.(12) and (14) in

Eq.(11), one obtains

šššššššššššššššššššššššššššššššš šššššššššššššššššššššššššš (16)

Next substituting Eqs. (13) and (15) in Eq.(16), one obtains [10]

ššššššššššššššššš ššššššššššš (17)

where

šššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššš ššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššš (18)

is the minimum radius of curvature of world lines. Equation (17) defines the eight-dimensional quadratic form ds2, which is non-negative along the world line. The inequality, Eq. (17), simply expresses the fact that the proper acceleration can never exceed the maximal proper acceleration. By analogy with the construction of the space-time line element of general relativity from the limiting speed of light, it is natural to take ds2 to be the line element in the tangent bundle of space-time, in which the space-time coordinates xm are the coordinates in the space-time base manifold, and the four-velocity coordinates r0vm (modulo a factor of r0) are the tangent space coordinates.

The bundle line element, Eq.(17), can be rewritten as follows [10], [1]:

ššššššššššššššššššššššššššššššššššššššššš ds2 š GMNdxMdxN,šššššššš {M,N = 0,2,...,7},ššššššššššššššššššššššššššššššššššš (19)

where the bundle coordinates are

šššššššššššššššššššššššššššššššš {xM} ≡š {xm, r0vm} ,ššššš {M = 0,2,...,7; m = 0, 1, 2, 3},ššššššššššššššššššššššššššš (20)

and the metric of the tangent bundle of space-time is

ššššššššššššššššššššššššššššššššššššššššššššš ššššššššššššššššššššššššššššššššššššššš (21)

in which

ššššššššššššššššššššššššššššššššššššššššššššššššššššššššššš šššššššššššššššššššššššššššššššššššššššššššššššššššššš (22)

The bundle metric GMN, given by Eq.(21), has a structure similar to that of an eight-dimensional Kaluza-Klein gauge theory in which the higher dimensions are in four-velocity space, and šis the gauge potential. Eqs.( 19)-(22) served as the starting point for investigating possible implications of a limiting proper acceleration for the differential geometric structure of the tangent bundle of space-time [1]-[4], [6], [8]-[24]. Possible forms for the bundle connection, curvature, and action were explored, including those based on Riemann and Finsler space-times, and also Kähler and complex space-time tangent bundles. Among the many differential geometric invariants of the space-time tangent bundle, important for the present discussions is the Laplace-Beltrami operator:

ššššššššššššššššššššššššššššššššššššššššššššššš ššššššššššššššššššššššššššššššššššššššššš (23)

This is the invariant generalization of the wave operator, or d'Alembertian, of field theory. A simple invariant field equation for a Finslerian scalar field f(x,v) is then given by [20]

šššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššš Lf (x,v) = 0.ššššššššššššššššššššššššššššššššššššššššššššššššššššššššššš (24)

Finslerian scalar quantum fields

When the space-time is Minkowskian, the ordinary inhomogeneous Lorentz group (or Poincaré group) is a subgroup of the invariance group of the space-time tangent bundle [12], [20]. It is of interest to examine quantum field solutions to Eq.(24) for this simple case, in order to establish connections between the Finslerian framework and canonical relativistic quantum field theory. To this end, consider a simple case in which the space-time is completely flat. In particular, take the space-time metric to be Minkowskian. For this case, it was argued in earlier work that the scalar field satisfying Eq.(24) is given by [20], [25], [26]:

ššššššššššššššššššššššš ššššššššššššššššš (25)

where p denotes the four-momentum pm = {p0, p1, p2, p3} of a particle excitation of the scalar field, aŠ(p) and a(p) are the particle creation and annihilation operators satisfying the commutation relations

ššššššššššššššššššššššš [a(p), aŠ(p′)] = d 3(p - p′),ššš [a(p), a(p′)] = 0,šš [aŠ(p), aŠ(p′)] = 0,šššššššššššššššššš (26)

d 3(z) is the three-dimensional Dirac delta function, and q1(z) is the Heaviside function [28],

šššššššššššššššššššššššššššššššššššššššššššššššššššššššššššš šššššššššššššššššššššššššššššššššššššššššššššššššššššš (27)

Also in Eq.(25), N is a normalization factor such that the field operator acting on the vacuum state, namely , is the state of the field corresponding to a single-particle excitation appearing at some point (x,v) in the space-time tangent bundle, namely [25], [26],

ššššššššššššššššššššššššššššššššššššššššššššššš ššššššššššššššššššššššššššššššššššššššššš (28)

where V denotes the volume of space, m is the mass of the scalar particle excitation of the quantum field, and K1(z) is the modified Bessel function of the third kind of order one.

It can be shown that both the positive and negative frequency terms in Eq.(25) are proportional to [20], [9]:

ššššššššššššššššššššš ššššššššššššššš (29)

where dx/dt is the ordinary velocity of the observer, and

ššššššššššššššššššššššššššššššššššššššššššššššššššššš šššššššššššššššššššššššššššššššššššššššššššššššš (30)

As can be seen from Eq.(29), there occurs an intrinsic Planck-scale regularization of the quantum field, with an exponential energy cutoff beyond the Planck energy.

It is important to note that for an observer with ordinary velocity

šššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššš šššššššššššššššššššššššššššššššššššššššššššššššššššššššššššš (31)

in Minkowski space-time, one has

šššššššššššššššššššššššššššššššššššššššššššššššš ššššššššššššššššššššššššššššššššššššššššššš (32)

and therefore

ššššššššššššššššššššššššššššššššššššššššššššššššššššššš ššššššššššššššššššššššššššššššššššššššššššššššššš (33)

Thus the ordinary velocity šcorresponds to both future and past directed four velocity. This is essential in order that both the positive-frequency particle modes and the negative-frequency antiparticle modes in Eq.(25) and in the following have non-vanishing support. One is reminded of the Stückelberg-Feynman idea that antiparticles can be represented as particles with proper time reversed relative to true time [21], [27].

Hamiltonian of scalar quantum field

On the basis of microcausality, it was argued in earlier work [21] that it is logical to define the generalized adjoint (f (x,v))Š of the quantum field f (x,v) by

šššššššššššššššššššššššššššššššššššššššššššššššššššššššš ššššššššššššššššššššššššššššššššššššššššššššššššššš (34)

in which the ordinary adjoint is taken, but also the sign of the four-velocity v is changed. This is connected, through charge-conjugation, with the fact that the positive-frequency particle component of the field in Eq.(25) has non-vanishing support for positive v0 (or equivalently, positive pv), and the negative-frequency anti-particle component has non-vanishing support for negative v0 (equivalently, negative pv) [21]. In order that the Hamiltonian be Hermitian (in terms of the generalized adjoint), that it reduce to the canonical form in Fock space, and that the observer's four-velocity lie on the four-velocity shell (v2 = 1), it is natural to define the Hamiltonian for the scalar quantum field as follows [25], [26]:

ššššššššššššššššššššššššššššššššššššššššššš ššššššššššššššššššššššššššššššššššššš (35)

in which the bundle energy density T00(x,v) at point (x,v) in the bundle is integrated over the entire space-time tangent bundle with large spatial volume V, d (z) is the one-dimensional Dirac delta function, and the bundle energy density is given by

šššššššššššššššššššš šššššššššššššš (36)

To see that the Hamiltonian is Hermitian, one first notes that

šššššššššššššššššššššššššššššššššššššššš ššššššššššššššššššššššššššššššššššš (37)

Next, taking the generalized adjoint of T00(x,v) and using Eq.(34), one obtains

ššššššššššššššš ššššššššš (38)

Equivalently, using Eq.(25), Eq.(38) becomes

ššššššššššššššššššš ššššššššššššš (39)

or comparing Eqs.(39) and (36), one obtains

ššššššššššššššššššššššššššššššššššššššššššššššššššššššššš T00(x,v)Š = T00(x, -v).šššššššššššššššššššššššššššššššššššššššššššššššššššš (40)

Next substituting Eq.(40) in Eq.(37), one has

šššššššššššššššššššššššššššššššššššššššš šššššššššššššššššššššššššššššššššš (41)

and replacing the dummy variable of integration v by -v, Eq.(41) becomes

ššššššššššššššššššššššššššššššššššššššššš ššššššššššššššššššššššššššššššššššš (42)

Finally, substituting Eq.(35) in Eq.(42), one concludes that

šššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššš HŠ = H.ššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššš (43)

Thus HŠ is in fact Hermitian.

Next, using (25), (27) and (36) in (35), integrating over space, and substituting the integral [25], [29]

šššššššššššššššššššššššššššššššššššššššššš ššššššššššššššššššššššššššššššššššššš (44)

one obtains the canonical expression for the Hamiltonian operator for a scalar quantum field in Fock space [25]:

šššššššššššššššššššššššššššššššššššššššš ššššššššššššššššššššššššššššššššššš (45)

in whichššššššššššššššššššššššššššššššššššššššššššš šššššššššššššššššššššššššššššššššššššššššššššššššš (46)

For consistency, it is also well to verify that the Heisenberg equation of motion for the field f is satisfied, namely [30],

šššššššššššššššššššššššššššššššššššššššššššššššššššššššššššš ššššššššššššššššššššššššššššššššššššššššššššššššššššššš (47)

To see that (47) holds, one uses (45) and (25) to evaluate the commutator [H,f]. Thus one has

ššššššššššššššš ššššššššš (48)

or equivalently,

šššššššššššššššššššššššš šššššššššššššššššš (49)

Then substituting Eqs.(26) in Eq.(49), one obtains

ššššššššššššššššššššš ššššššššššššššš (50)

Finally, substituting Eq.(25) in Eq.(50), one obtains the Heisenberg equation of motion for the field, Eq.(47).

Vacuum energy density

Using Eqs.(35) and (36), and denoting the vacuum state by , it follows that the vacuum energy in the bundle, for spatial volume V, is given by [25]:

šššššššššššššššššššššššššššššššššššššššš ššššššššššššššššššššššššššššššššššš (51)

which is the canonical divergent result [30]. However, a particular observer has four-velocity v, and his world line at any time is confined to the neighborhood of v in the fiber (See Eq.(33)). The vacuum energy which he observes is therefore given by [25]

šššššššššššššššššššššššššš šššššššššššššššššššš (52)

in which D3v is defined by

ššššššššššššššššššššššššššššššššššššššššššššššš ššššššššššššššššššššššššššššššššššššššššš (53)

where d v is the spread in the spatial components of the four-velocity of the observer, and because of the Dirac delta function in Eq.(52),

ššššššššššššššššššššššššššššššššššššššššššššš ššššššššššššššššššššššššššššššššššššššš (54)

One notes that in Eq.(52), one can use the well known identity:

šššššššššššššššššššššš šššššššššššššššš (55)

Equation (53), defining the spread, is true because the expression following D3v in Eq.(52) turns out to be proportional to (1/v0) = (1+|v|2)-1/2, with no other dependence on the spatial component v of four-velocity (See Eqs.(54) and (62)-(67)).

Next, denoting the three respective contributions to Eq.(52) of the three terms of Eq.(36) by , and , respectively, then

ššššššššššššššššššššššššššššššššššš ššššššššššššššššššššššššššššš (56)

Then using Eqs.(36), (52), and (56), one has

(57)

 

 
ššššššš .š

and substituting Eqs.(25) and (55) in Eq.(57), one obtains

 
(58)

Here q1(+r0pv/ÿ) has been replaced by q1(+v0), since it can be shown that pv > mc when v0 = gš > 0, and pv < mc when v0 = -g < 0 [20], [21]. Then, according to Eqs.(27), (30) and (54), one has

ššššššššššššššššššššššššššššššššššššššššššššš q1(v0)q1(-v0) = 0,ššš [q1(v0)]2 = q1(v0).šššššššššššššššššššššššššššššššššššššššš (59)

Next using Eq.(59) in Eq.(58), one obtains

 
ššššššššš šššššššš(60)

One also has

ššššššššššššššššššššš ššššššššššššššš (61)

Therefore using Eqs.(61) in Eq.(60), one obtains

 
šššššššššššššššššššššššš (62)

or equivalently,

šššššššššššššššššššššššš šššššššššššššššššš (63)

Analogously, corresponding to the contributions to Eq.(56) of the two remaining terms of Eq.(38), containing derivatives with respect to space and four-velocity, respectively, one obtains

šššššššššššššššššššššššš ššššššššššššššššššš (64)

and

šššššššššššššššššššššššš šššššššššššššššššš (65)

Then substituting Eqs.(63)-(65) in Eq.(56), noting that

ššššššššššššššššššššššššššššššššššššššššššššššššššššššššššššš p02 = |p|2 + m2c2,šššššššššššššššššššššššššššššššššššššššššššššššššššššššš (66)

evaluating the following integral [26], [29],

ššššššššššššššššššššššššššššššššššššš ššššššššššššššššššššššššššššššš (67)

where K2(z) is the modified Bessel function of the third kind of order 2, substituting Eq.(28), and dividing by the spatial volume V, one finally obtains the vacuum energy density seen by an observer at (x,v) in the space-time tangent bundle:

šššššššššššššššššššššššššššššššššššššš ššššššššššššššššššššššššššššššššš (68)

Thus any one observer sees a finite vacuum energy density given by Eq.(68). One notes that for sufficiently small spread in the spatial part of the observer's four-velocity (Eq.(53)), the observed vacuum energy density may be near vanishing. This may be consistent with a near vanishing cosmological constant.

References

1.            H.E.Brandt. Finslerian Spacetime. Contemporary Math., 196, 273-287, 1996.

2.            H.E.Brandt. Finslerian Fields in the Spacetime Tangent Bundle. Chaos, Solitons Fractals, 10, 267-282, 1999.

3.            H.E.Brandt. Finslerian Fields, in Finslerian Geometries: A Meeting of Minds. P.L.Antonelli, ed., Kluwer, Dordrecht, pp. 131-138, 2000.

4.            H.E.Brandt. Finsler-Spacetime Tangent Bundle. Found. Phys. Lett., 5, 221-248, 1992.

5.            H.Rund. The Differential Geometry of Finsler Spaces. Berlin, Springer, 1959.

6.            H.E.Brandt. Riemann Curvature Scalar of Spacetime Tangent Bundle. Found. Phys. Lett., 5, 43-55, 1992.

7.            K.Yano, E.T.Davies. On the Tangent Bundles of Finsler and Riemannian Manifolds. Rend. Circ. Mat., Palermo, 12, 211-228, 1963.

8.            H.E.Brandt. Maximal Proper Acceleration Relative to the Vacuum. Lett. Nuovo Cim., 38 (1983), 522-524; 39 (1984), 192.

9.            H.E.Brandt. Quantum Vacuum Heuristics. J. Mod. Optics, 50, 2455-2463, 2003.

10.        H.E.Brandt. Maximal Proper Acceleration and the Structure of Spacetime. Found. Phys. Lett., 2, 39-58, 405, 1989.

11.        H.E.Brandt. Structure of Spacetime Tangent Bundle. Found. Phys. Lett., 4, 523-536, 1991.

12.        H.E.Brandt. The Maximal Acceleration Group. In XIIIth International Colloquium on Group Theoretical Methods in Physics, W.W.Zachary, ed., World Scientific, Singapore, pp. 519-522, 1984.

13.        H.E.Brandt. (1991) Connections and Geodesics in the Spacetime Tangent Bundle, Found. Phys., 21, 1285-1295.

14.        H.E.Brandt. Differential Geometry of Spacetime Tangent Bundle. Int. J. Theor. Phys. 31, 575-580, 1992.

15.        H.E.Brandt. Kinetic Theory in Maximal-Acceleration Invariant Phase Space. Nucl. Phys. B (Proc. Suppl.), 6, 367-369, 1989.

16.        H.E.Brandt. Kähler Spacetime Tangent Bundle. Found. Phys. Lett., 5, 315-336, 1992.

17.        H.E.Brandt. Complex Spacetime Tangent Bundle. Found. Phys. Lett., 6, 245-255, 1993.

18.        H.E.Brandt. Spacetime Tangent Bundle with Torsion. Found. Phys. Lett., 6, 339-369, 1993.

19.        H.E.Brandt. Solution to Torsion Relations in Finsler-Spacetime Tangent Bundle. Found. Phys. Lett., 7, 297-301, 1994.

20.        H.E.Brandt. Quantum Fields in the Spacetime Tangent Bundle. Found. Phys. Lett., 11, 265-275, 1998.

21.        H.E.Brandt. Finslerian Quantum Fields and Microcausality. Found. Phys. Lett., 13, 307-328, 2000.

22.        H.E.Brandt. Causal Domain of Minkowski-Spacetime Tangent Bundle. Found. Phys. Lett., 13, 581-588, 2000.

23.        H.E.Brandt. Particle Geodesics and Spectra in the Spacetime Tangent Bundle. Rep. Math. Phys., 45, 389-405, 2000.

24.        H.E.Brandt. Lorentz-Invariant Quantum Fields in the Spacetime Tangent Bundle. Internat. J. Math. and Math. Sci., No. 24, 1529-1546, 2003.

25.        H.E.Brandt. Intrinsic Gravitational Regularization of Quantum Fields. Found. Phys. Lett., 17, 295-300, 2004.

26.        H.E.Brandt. Finite Vacuum Energy Density in Quantum Field Theory. To appear in J. Mod. Optics, 2004.

27.        R.P.Feynman. The Theory of Positrons. Phys. Rev., 76, 749-759, 1949.

28.        R.P.Kanwal. Generalized Functions: Theory and Technique. Academic Press, New York, p.1, 1983.

29.        F.Oberhettinger, L.Badii. Tables of Laplace Transforms. Springer, New York, p.94, 1973.

30.        A.Zee. Quantum Field Theory in a Nutshell. Princeton University Press, Princeton, 2003.

 

 

 

Howard E.Brandt, Researcher-scientist (Army Research Laboratory, Adelphi, USA); he is a theoretical physicist with primary scientific interests in quantum field theory, general relativity, differential geometry, and quantum information processing. The present paper is an expanded version of an invited paper, "Finsler Geometry and Quantum Field theory", presented at the Fourth World Congress of Nonlinear Analysts in the session: Applications of Finsler Differential Geometry (in Engineering, Physics, and Biology) held July 5, 2004, in Orlando, Florida, U.S.

 




[Contents]

homeKazanUniversitywhat's newsearchlevel upfeedback

© 1995-2008 Kazan State University