Science

Stability, control and rigid bodies dynamics

10th International Conference

(Ukraine, June, 2008)

A.M.Kovalev, B.I.Konosevich

Institute of Applied Mathematics and Mechanics of Ukraine NAS

Str. 74, R.Luxemburg, Donetsk, 83114, Ukraine

By the initiative of Professor P.V.Kharlamov, who is the founder of Donetsk school of analytical mechanics, beginning 1969 the Institute of applied mathematics and mechanics of the National Academy of Sciences of Ukraine (IAMM NASU) holds conferences on the actual problems of rigid bodies' dynamics, stability theory and control theory. The subject-matter of these conferences is connected with modern researches in the field of general mechanics and applied mathematics. It includes the modern technical objects modelling by rigid bodies systems, construction of new mathematical methods for investigation of dynamics of complete mechanical systems, elaboration of the effective ways for control of moving objects, further development of the stability theory, and application of general methods to investigation of dynamics of different objects. The number of participants of these conferences is 100-150 persons, and it allows to discuss the problems in details and to establish close contacts between scientific schools. At present time, these conferences take place with regularity once in three years.

The regular 10th International conference "Stability, control and rigid bodies' dynamics" was held by IAMM NASU on June 5-10, 2008. Its organization was fulfilled by the departments of applied and technical mechanics of IAMM NASU and by the mathematical faculty of Donetsk National University (DonNU). DonNU lent a great help in the material security of the conference. The boarding-house "Nauka", situated on Azov sea coast in 15 km distance from Mariupol, was put by DonNU as the conference place. The conference was supported materially by the company "BMS consulting" (Kiev).

Submissions to the 10th conference totaled 130 papers from 174 authors. Among them 28 were doctors and 25 were candidates of sciences, 38 persons were from Ukraine. Actually 82 persons took part in the work of the Conference, they arrived from 9 countries (Ukraine, Russia, Armenia, Byelorussia, Egypt, France, Japan, Poland, Serbia). They presented 87 communications including 11 plenary lectures, 15 section lectures, 42 short talks in sections and 19 posters. Selected works are published in the collection of scientific papers (IAMM NASU).

Some survey of plenary lectures.

S.A.Dovgii, V.V.Meleshko and A.N.Trofimchuk (Ukraine) presented a lecture , which exited a great interest. The authors informed about modern possibilities for search of the scientific information and gave some recommendations especially useful for scientists from the former Soviet Union.

V.A.Samsonov presented the plenary lecture of M.Z.Dosaev, L.A.Klimina, B.Ya.Lokshin (Russia) entitled , where a mathematical model was developed for an energy plant consisting of the electric generator and the wind turbine. Evolution of the stable periodic regimes was studied depending on parameters.

K.Hedrih presented a lecture . This lecture contained a survey of the author's research results on dynamical models of mechanical systems consisting of the great number of coupled deformable bodies.

M.P.Kharlamov (Russia) presented his work Kovalevskaya gyrostat in two constant fields>, where the equations of the stratified critical set of the integral map were obtained for the gyrostat. All critical periodic motions of the Kovalevskaya gyrostat in two constant fields were found explicitly.

In the lecture Sommerfeld-Kononenko effect study>, T.S.Krasnopolskaya (Ukraine) told about investigations of the coupling effect between an excitation machine and vibrational load.

S.M.Onyshchenko (Ukraine) presented the lecture , where direct, reverse and semireverse synthesis methods were examined.

V.S.Sergeev (Russia) made a report entitled integrodifferential equations of Volterra-type>. The stability under persistent disturbances and the structure of the general solution were investigated in the neighborhood of zero assuming asymptotic stability of the trivial solution of the linearized unperturebed equation. Stability properties in two critical cases were analyzed too.

In the plenary lecture <Integrable matrix ODEs> of V.V.Sokolov (Russia), a number of integrable classes of nonlinear matrix ordinary differential equations were constructed. This type equations describe, in particular, n-dimentional rigid body dynamics.

In the lecture of V.N.Tkhai (Russia) entitled photogravitational three-body problem: libration points and stable agglomerations of microparticles> the author's results were presented concerning the stable agglomerations of microparticles in the double star system.

H.Yabuno, A.A.Mailybaev and A.P.Seyranian (Japan, Russia) presented their work . They showed a film where experiments were demonstrated that connected with stability and stabilization of equilibrium positions of a physical pendulum with vibrating suspension point and of an elastically supported beam of variable width under the action of periodic axial forces. The experimental data were compared with the theoretical results of the authors.

In the work of H.M.Yehia (Egypt) entitled time-irreversible systems with Lagrangians involving terms linear in velocities were investigated. Two sets of these type integrable systems were constructed in addition to the previous results of the author.

Not long ago D.L.Abrarov (Russia) published two books and V.N.Onikiychuk (Russia) published one book containing the authors results that give, by their opinion, the exact solution of the problem on motion of a rigid body with a fixed point in the field of gravity. This problem is one of the classical problems of mechanics and it is one of the main topics of the conference series "Stability, control and rigid bodies dynamics". Therefore the scientific community presented at the 10th Conference had to express its attitude to these publications. For this purpose the Round Table discussion was hold on the theme "Integrability problem for equations of rigid body dynamics". It was organized in the following way: at first D.L.Abrarov and V.N.Onikiychuk told about their results, and then the consideration of the theme took place. Following persons participated in this consideration: I.N.Gashenenko (Ukraine), A.A.Ilyukhin (Russia), M.P.Kharlamov (Russia), A.M.Kovalev (Russia), T.S.Krasnopolskaya (Ukraine), M.E.Lesina (Ukraine), V.V.Meleshko (Ukraine), V.V.Sokolov (Russia), V.N.Tkhai (Russia), H.M.Yehia (Egypt).

They discussed the works of D.L.Abrarov on the exact solvability of the Euler-Poisson equations in terms of exponents of L-functions of elliptic curves over the field of rational numbers. Their opinions can be summarized in the following way. In his works, D.L.Abrarov makes an attempt to give a new mathematical description of the problem. It is necessary to interpret the obtained results in the language which is accepted among the specialists in the given scientific area and to present the strictly grounded facts that can be verified.

The abstract of V.N.Onikiychuk's communication was not published in the Book of abstracts, the Organizing Committee decided to give him an opportunity to speak at the Round Table. The participants of the conference suggested that the author should state his results in the scientific articles for submitting to the specialized journals, with attention to the opinion of reviewers and authoritative scholars.

The 11th International conference "Stability, control and rigid bodies dynamics" is supposed to be held in the beginning of September, 2011.

Alexander M.Kovalev, Professor, Dr. Sci. Phys. & Math., Correspondent member of the National Academy of Sciences of Ukraine, Director of the Institute of Applied Mathematics and Mechanics of NASU. Basic scientific interests: mathematical control theory, rigid bodies dynamics, stability theory. kovalev@iamm.ac.donetsk.ua

Boris I.Konosevich, Candidate of physical and mathematical sciences, senior research worker of the Institute of Applied Mathematics and Mechanics of NASU. Fields of scientific interests: dynamics of rigid bodies systems, stability of motion, exterior ballistics.

konos@iamm.ac.donetsk.ua




[Contents]

homeKazanUniversitywhat's newsearchlevel upfeedback

© 1995-2008 Kazan State University